Mating status affects females feeding behavior but does not the encapsulation response in the field cricket, Gryllus (Gryllus) assimilis (Fabricius, 1775)

Authors

DOI:

https://doi.org/10.37486/2675-1305.ec04025

Keywords:

Immunity, Trade-off, Reproduction, Food consumption, Fitness

Abstract

Mating can trigger different effects on the physiology and behavior of animals, especially in females. These effects can be either beneficial, such as boosting the immune response, or harmful, such as decreasing survival, for example. Cricket females are among the most used models for understanding these life history trade-offs. We recently demonstrated that mated females have a slight cost of reproduction in survival that could be explained if they differed in resource consumption compared to unmated, being able to avoid putative damages of reproduction on self-maintenance. To test whether mating status modulates feeding behavior and self-maintenance (i.e., immunity), we performed two experimental blocks: In the first, we measure the food intake of both virgin and mated females of Gryllus (Gryllus) assimilis (Fabricius, 1775). In the second, we compared the ability to mount an acute immune response (encapsulation) against a nylon filament implant, a widely used method to challenge the insect immune system. Results showed that mated females did not increase food consumption compared to pre-mating period, however, the virgin group (control) drastically decreased the amount of food ingested. Furthermore, no difference in immune response was found between mating status. As mated females ingested more food than those virgins of the same age, we suggest the feeding behavior (i.e., resource acquisition) as one of the used behavioral strategies to maintain immune ability, high oviposition rates, and survival of mated females of G. (G.) assimilis when fed ad libitum.

 

Downloads

Download data is not yet available.

References

Bascuñán-García, A. P.; Lara, C.; Córdoba-Aguilar, A. (2010) Immune investment impairs growth, female reproduction and survival in the house cricket, Acheta domesticus. Journal of Insect Physiology, 56(2): 204-11. doi: 10.1016/j.jinsphys.2009.10.005

Clark, RM; Zera, A. J.; Behmer, S. T. (2015) Nutritional physiology of life-history trade-offs: how food protein-carbohydrate content influences life-history traits in the wing-polymorphic cricket Gryllus firmus. Journal of Experimental Biology, 218(2): 298-308. doi: 10.1242/jeb.112888

Clifford, C. W.; Woodring, J. P. (1986) The effects of virginity and ovariectomy on growth, food consumption, fat body mass and oxygen consumption in the house cricket, Acheta domesticus. Journal of Insect Physiology, 32(5): 425-431. doi: 10.1016/0022-1910(86)90002-8

Drayton, J. M.; Jennions, M. D. (2011) Inbreeding and measures of immune function in the cricket Teleogryllus commodus. Behavioral Ecology, 22(3): 486-492. doi: 10.1093/beheco/arr005

Fedorka, K. M.; Zuk, M.; Mousseau, T. (2004) Immune suppression and the cost of reproduction in the ground cricket, Allonemobius socius. Evolution, 58(11): 2478-2485. doi: 10.1111/j.0014-3820.2004.tb00877.x

Flatt, T. (2011) Survival costs of reproduction in Drosophila. Experimental Gerontology, 46(5): 369-375. doi: 10.1016/j.exger.2010.10.008

Gershman, S. N. (2008) Sex-specific differences in immunological costs of multiple mating in Gryllus vocalis field crickets. Behavioral Ecology, 19(4): 810-815. doi: 10.1093/beheco/arn040

Kelly, C. D. (2018) The causes and evolutionary consequences of variation in female mate choice in insects: the effects of individual state, genotypes and environments. Current Opinion in Insect Science, 27: 1-8. doi: 10.1016/j.cois.2018.01.010

Limberger, G. M.; Esteves, K. P.; Halal, L. M., Nery; L. E. M.; Fonseca D. B. (2022) Chronic immune challenge is detrimental to female survival, feeding behavior, and reproduction in the field cricket Gryllus assimilis (Fabricius, 1775). Journal of Comparative Physiology B, 192: 423-434. doi: 10.1007/s00360-022-01431-y

Limberger, G. M.; Nery, L. E. M.; Fonseca, D. B. (2021) Reproductive status modulates mortality rate, lifespan and egg production, but do not the physiological aging in the field cricket Gryllus assimilis (Fabricius, 1775) (Orthoptera: Gryllidae). Neotropical Entomology, 50: 237-246. doi: 10.1007/s13744-020-00839-x

Miyashita, A.; Lee, T. Y. M.; Adamo, S. A. (2020) High-stakes decision-making by female crickets (Gryllus texensis): When to trade in wing muscles for eggs. Physiological and Biochemical Zoology, 93(6): 450-465. doi: 10.1086/711956

Moret, Y.; Schmid-Hempel, P. (2000) Survival for immunity: the price of immune system activation for bumblebee workers. Science, 290(5494): 1166-1168. doi: 10.1126/science.290.5494.1166

Park, Y.; Stanley, D. (2015) Physiological trade-off between cellular immunity and flight capability in the wing-dimorphic sand cricket, Gryllus firmus. Journal of Asia-Pacific Entomology, 18(3): 553-559. doi: 10.1016/j.aspen.2015.07.007

Rantala, M. J.; Roff, D. A. (2005) An analysis of trade-offs in immune function, body size and development time in the Mediterranean field cricket, Gryllus bimaculatus. Functional Ecology, 19(2): 323-330. doi: 10.1111/j.1365-2435.2005.00979.x

Schmid-Hempel, P. (2005) Evolutionary ecology of insect immune defenses. Annual Review of Entomology, 50: 529-551. doi: 10.1146/annurev.ento.50.071803.130420

Schwenke, R. A.; Lazzaro, B. P.; Wolfner, M. F. (2016) Reproduction- immunity trade-offs in insects. Annual Review of Entomology, 61: 239-256. doi: 10.1146/annurev-ento-010715-023924

Shoemaker, K. L.; Adamo, S. A. (2007) Adult female crickets, Gryllus texensis, maintain reproductive output after repeated immune challenges. Physiological Entomology, 32(2): 113-120. doi: 10.1111/j.1365-3032.2006.00552.x

Shoemaker, K. L.; Parsons, N. M.; Adamo, S. A. (2006) Mating enhances parasite resistance in the cricket Gryllus texensis. Animal Behaviour, 71(2): 371-80. doi: 10.1016/j.anbehav.2005.05.007

Siva-Jothy, M. T.; Moret, Y.; Rolff, J. (2005) Insect immunity: An evolutionary ecology perspective. Advances in Insect Physiology, 32: 1-48. doi: 10.1016/S0065-2806(05)32001-7

Skowronek, P.; Wójcik Ł.; Strachecka, A. (2021) Fat body-multifunctional insect tissue. Insects, 12(6): 547. doi: 10.3390/insects12060547

Stahlschmidt, Z. R.; Adamo, S. A. (2015) Food-limited mothers favour offspring quality over offspring number: a principal components approach. Functional Ecology, 29(1): 88-95. doi: 10.1111/1365-2435.12287

Stearns, S. C. (1989) Trade-offs in life-history evolution. Functional Ecology, 3(3): 259-268. doi: 10.2307/2389364

Stearns, S. C. (1992) The evolution of life histories. Oxford: Oxford University Press.

Treidel, L. A.; Clark, R. M.; Lopez, M. T.; Williams, C. M. (2021) Physiological demands and nutrient intake modulate a trade-off between dispersal and reproduction based on age and sex of field crickets. The Journal of Experimental Biology, 224(7): jeb237834. doi: 10.1242/jeb.237834

Tsukamoto, Y.; Kataoka, H.; Nagasawa, H.; Nagata, S. (2014) Mating changes the female dietary preference in the two-spotted cricket, Gryllus bimaculatus. Frontiers in Physiology, 5: 95. doi: 10.3389/fphys.2014.00095

Woodring, J.; Lorenz, M. W. (2007) Feeding, nutrient flow, and functional gut morphology in the cricket Gryllus bimaculatus. Journal of Morphology, 268(9): 815-825. doi: 10.1002/jmor.10554

Worthington, A. M.; Kelly, C. D. (2016) Females gain survival benefits from immune‐boosting ejaculates. Evolution, 70(4): 928-933. doi: 10.1111/evo.12890

Zera, A.J.; Potts, J.; Kobus, K. (1998) The physiology of life-history trade- offs: experimental analysis of a hormonally induced life-history trade-off in Gryllus assimilis. The American Naturalist, 152(1): 7-23. doi: 10.1086/286146

Downloads

Published

2022-08-18

How to Cite

Limberger, G. M., Nery, L. E. M., & Da Fonseca, D. B. (2022). Mating status affects females feeding behavior but does not the encapsulation response in the field cricket, Gryllus (Gryllus) assimilis (Fabricius, 1775). Entomological Communications, 4, ec04025. https://doi.org/10.37486/2675-1305.ec04025

Issue

Section

Bioassay

Metrics