Supressão de acasalamentos e redução de danos de Spodoptera frugiperda (J. E. Smith, 1797) no algodoeiro

Authors

  • Fabiano G. Schirmer Provivi do Brasil Serviços Agrícolas Ltda, São Paulo, SP, Brasil
  • Bruna M. Favetti Provivi do Brasil Serviços Agrícolas Ltda, São Paulo, SP, Brasil
  • Thomas Clark Provivi, Inc, Santa Monica, CA, USA
  • Tederson Galvan Provivi do Brasil Serviços Agrícolas Ltda, São Paulo, SP, Brasil
  • Erick M. G. Cordeiro Provivi do Brasil Serviços Agrícolas Ltda, São Paulo, SP, Brasil
  • Lucia Vivan Fundação de Apoio a Pesquisa Agropecuária de Mato Grosso, Rondonópolis, MT, Brasil
  • Khai Tran Provivi, Inc, Santa Monica, CA, USA
  • Kristin Broms Provivi, Inc, Santa Monica, CA, USA
  • Ricardo Miranda Fundação de Apoio a Pesquisa Agropecuária de Mato Grosso, Rondonópolis, MT, Brasil

DOI:

https://doi.org/10.37486/2675-1305.ec05026

Keywords:

sprayable pheromone, cotton, IPM

Abstract

The control of Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae) in cotton (Gossypium hirsutum L.) has been limited by the rapid development of resistance to insecticides and Bt toxins. The fall armyworm has become increasingly present in cotton fields, becoming a major problem for growers. Therefore, the demand for new and more sustainable tools for managing this pest has increased in recent years. Ideally, the new tool should be compatible with other available control tactics, such as the use of Bt plants, and it should be implemented following IPM principles. In this study, we tested the efficacy of a liquid pheromone formulation for the Fall armyworm control in Bt and conventional cotton varieties in the Brazilian Midwest. Our results showed that the capture of insects in traps has been reduced by 85% in areas treated with pheromone compared to control suggesting high levels of mating suppression. Pheromone treatment also resulted in 70% less damage to cotton reproductive structures when compared to areas not treated with the pheromone in conventional cotton. Moreover, applying pheromone provided an additional benefit to Bt cotton, resulting in 85% damage reduction. Our results show the effectiveness and feasibility of mating disruption with pheromone as an important management tactic for Lepidopterans in cotton. However, no significant differences were found in yield in the conditions tested. These results represent a potential key step toward developing more sustainable tools for pest management in Brazil.

Downloads

References

Amaral, F. S. A.; Guidolin, A. S.; Salmeron, E.; Kanno, R. H.; Padovez, F. E. O.; Fatoretto, J. C.; Omoto, C. (2020) Geographical distribution of Vip3Aa20 resistance allele frequencies in Spodoptera frugiperda (Lepidoptera: Noctuidae) populations in Brazil. Pest Managment Science, 76(1): 169-178. doi: 10.1002/ps.5490

Barros, R.; Degrande, P. E. (2012) Evaluation of Bt-cotton as a strategic tool for the control of cotton plant-pests under field conditions. Científica, 40: 117-137.

Barros, E M.; Torres, J. B.; Ruberson, J. R.; Oliveria, M. D. (2010) Development of Spodoptera frugiperda on different hosts and damage to reproductive structures in cotton. Entomologia Experimentalis et Applicata, 137(3): 237-245. doi: 10.1111/j.1570-7458.2010.01058.x

Bernardi, O.; Bernardi, D.; Horikoshi, R. J.; Okuma, D. M.; Miraldo, L. L.; Fatoretto, J.; Medeiros, F. C.; Burd, T.; Omoto, C. (2016) Selection and characterization of resistance to the Vip2Aa20 protein from Bacillus thuringiensis in Spodoptera frugiperda. Pest Management Science, 72(9): 1794-1802. doi: 10.1002/ps.4223

Belot, J. L.; Vilela, P.; Galbieri, R.; Scoz, L.; Boldt, A. S.; Chimenez-Franzon, R.; Leoni, I., Rizzi, U.; Souza, M. (2020) IMA 5801B2RF, insect-resistant and glyphosate tolerant cotton cultivar, with resistance to root-knot nematode. Crop Breeding and Applied Biotechnology, 20(4): e322920412. doi: 10.1590/1984-70332020v20n4c65

Caprio, M. A.; Suckling, D. M. (1995) Mating disruption reduces the risk of resistance development to transgenic apple orchards: simulation of the lightbrown apple moth. New Zealand Plant Protection, 48: 52-58. doi: 10.30843/nzpp.1995.48.11544

Higbee, B. S.; Burks, C. S. (2021) Individual and Additive Effects of Insecticide and Mating Disruption in Integrated Management of Navel Orangeworm in Almonds. Insects, 12(2): 188. doi: 10.3390/insects12020188

Jallow, M. F. A.; Dahab, A. A.; Albaho, M. S.; Devi, V. Y.; Jacob, J.; Al-Saeed, O. (2020) Efficacy of mating disruption compared with chemical insecticides for controlling Tuta absoluta (Lepidoptera: Gelechiidae) in Kuwait. Applied Entomology and Zoology, 55(2): 213-221. doi: 10.1007/s13355-020-00673-y

Know, O. G. G.; Constable, G. A.; Pyke, B.; Gupta, V. V. S. R. (2006) Environmental impact of conventional and Bt insecticidal cotton expressing one and two Cry genes in Australia. Australian Journal of Agricultural Research, 57(5): 501-509. doi: 10.1071/ar05366

Marur, C.J.; Ruano, O. (2001) A reference system for determination of developmental stages of upland cotton. Revista de Oleaginosas e Fibrosas, 5:313-317.

Mitchell, E. R.; McLaughlin, J. R. (1982) Suppression of Mating and Oviposition by Fall Armyworm and Mating by Corn Earworm in Corn, Using the Air Permeation Technique, Journal of Economic Entomology, 75(2): 270-274. doi: 10.1093/jee/75.2.270

Montezano, D. G.; Sosa-Gómez, D. R.; Specht, A.; Roque-Specht, V. F.; Sousa-Silva, J. C., Paula-Moraes, S. V.; Peterson, J. A.; Hunt, T. E. (2018) Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. African Entomology, 26(2): 286-300. doi: 10.4001/003.026.0286

Mota-Sanchez, D.; Wise , J. C. (2023) The Arthropod Pesticide Resistance Database. https://www.pesticideresistance.org/search.php. Access on: 02.ii. 2023.

Paredes-Sánchez, F. A.; Rivera, G.; Bocanegra-García, V.; Martínez-Padrón, H. Y.; Berrones-Morales, M.; Niño-García, N.; Herrera-Mayorga, V. (2021) Advances in Control Strategies against Spodoptera frugiperda. A Review. Molecules, 26(18): 5587. doi: 10.3390/molecules26185587

Pogue, M. G. (2002) A world revision of the genus Spodoptera Guenée: (Lepidoptera: Noctuidae). Memoirs of the American Entomological Society, 43: 1-201.

Sivasupramaniam, S.; Moar, W. J.; Ruschkel, L. G.; Osborn, J. A.; Jiang, C.; Sebaugh, J. L.; Brown, G. R.; Sharppley, Z. W.; Oppenhuizen, M. E.; Mullins, J. W., et al. (2008) Toxicity and characterization of cotton expressing Bacillus thuringiensis Cry1Ac and Cry2Ab2 proteins for control of lepidopteran pests. Journal of Economic Entomology, 101(2): 546-554. doi: 10.1093/jee/101.2.546

Suckling, D. M.; Shaw, P. W.; Khoo, J. G. I.; Cruickshank, V. (1990) Resistance management of lightbrown apple moth, Epiphyas postvittana (Lepidoptera: Tortricidae) by mating disruption. New Zealand Journal of Crop and Horticultural Science, 18(2-3): 1175-8783. doi: 10.1080/01140671.1990.10428077

Witzgall, P.; Kirsch P.; Cork, A. (2010) Sex pheromones and their impact on pest management. Journal of Chemical Ecology, 36(1): 80-100. doi: 10.1007/s10886-009-9737-y

Downloads

Published

2023-10-04

How to Cite

Schirmer, F. G., Favetti, B. M., Clark, T., Galvan, T., Cordeiro, E. M. G., Vivan, L., … Miranda, R. (2023). Supressão de acasalamentos e redução de danos de Spodoptera frugiperda (J. E. Smith, 1797) no algodoeiro. Entomological Communications, 5, ec05026. https://doi.org/10.37486/2675-1305.ec05026

Issue

Section

Bioassay