Red harvester ants Pogonomyrmex barbatus (Smith, 1858) (Hymenoptera: Formicidae) do not distinguish between sorghum head mold symptomatic and asymptomatic seeds

Authors

DOI:

https://doi.org/10.37486/2675-1305.ec06029

Keywords:

Seed preference, fungal infection, ant-seed interactions

Abstract

Red harvester ants, Pogonomyrmex barbatus (Smith, 1858) (Hymenoptera: Formicidae), common in the Lower Rio Grande Valley of Texas, are known to gather seeds from areas around their nests and store the seeds inside their nests for later consumption. As these ants often nest in and near agricultural fields, some of these seeds may be from crops and may also be infected with fungal plant pathogens. These pathogens can degrade seed coats and may cause the seeds to rot within the ant nests, decreasing storage time and potentially spreading the pathogen to other stored seeds. We studied how head mold, a common sorghum disease, changed ant preferences for sorghum seeds. Using seed depots, we evaluated foraging preferences for sorghum seeds with and without head mold and then monitored how many seeds of each type were collected by the colonies after 1, 2, 4, and 24 hours. We found that red harvester ants did not have any significant preference for infected or uninfected seeds, taking both equally over time. Given this non-preference, ants were assumed to be storing infected seeds next to uninfected seeds within their colonies. However, the risk that stored pathogen-infected seeds poses as a source of future seed infection to seeds within the nest and plants in the surrounding field needs to be further examined.

Downloads

Download data is not yet available.

References

Ackerman, A.; Wenndt, A.; Boyles, R. (2021) The sorghum grain mold disease complex: Pathogens, host responses, and the bioactive metabolites at play. Frontiers in Plant Science, 12: 660171. doi: 10.3389/fpls.2021.660171

Arnan, X.; Retana, J.; Rodrigo, A.; Cerdá, X. (2010) Foraging behaviour of harvesting ants determines seed removal and dispersal. Insectes Sociaux, 57(4): 421-430. doi: 10.1007/s00040-010-0100-7

Cremer, S. (2019) Social immunity in insects. Current Biology, 29(11): R458-R463. doi: 10.1016/j.cub.2019.03.035

Cremer, S.; Pull, C. D.; Fürst, M. A. (2018) Social immunity: emergence and evolution of colony-level disease protection. Annual Review of Entomology, 63(1): 105-123. doi: 10.1146/annurev-ento-020117-043110

Crist, T. O.; Friese, C. F. (1993) The impact of fungi on soil seeds: implications for plants and granivores in a semiarid shrub‐steppe. Ecology, 74(8): 2231-2239. doi: 10.2307/1939576

Mendonça, A. de L.; Silva, C. E. da; Mesquita, F. L. T. de; Campos, R. da S.; Nascimento, R. R. do; Ximenes, E. C. P. de A.; Sant'Ana, A. E. G. (2009) Antimicrobial activities of components of the glandular secretions of leaf cutting ants of the genus Atta. Antonie Van Leeuwenhoek, 95(4): 295-303. doi: 10.1007/s10482-009-9312-0

Elliott-Vidaurri, L. V.; Martinez, I.; Pereira, E.; Penn, H. J.; Choudhury, R. A. (2023) Tree canopy cover and elevation affect the distribution of red harvester ant nests in a peri-urban setting. Environmental Entomology, 52(3): 510-520. doi: 10.1093/ee/nvad025

Elliott-Vidaurri, L. V.; Rivera, D.; Noval, A.; Choudhury, R. A.; Penn, H. J. (2022) Red Harvester ant (Pogonomyrmex barbatus F. Smith; Hymenoptera: Formicidae) preference for cover crop seeds in South Texas. Agronomy, 12(5): 1099. doi: 10.3390/agronomy12051099

Farji-Brener, A. G.; Werenkraut, V. (2017) The effects of ant nests on soil fertility and plant performance: a meta-analysis. Journal of Animal Ecology, 86(4): 866-877. doi: 10.1111/1365-2656.12672

Fleurat-Lessard, F. (2017) Integrated management of the risks of stored grain spoilage by seedborne fungi and contamination by storage mould mycotoxins-An update. Journal of Stored Products Research, 71: 22-40. doi: 10.1016/j.jspr.2016.10.002

Friese, C.; Allen, M. (1993) The interaction of harvester ants and vesicular-arbuscular mycorrhizal fungi in a patchy semi-arid environment: the effects of mound structure on fungal dispersion and establishment. Functional Ecology, 7(1): 13-20. doi: 10.2307/2389862

Greene, M. J., Pinter-Wollman, N.; Gordon, D. M. (2013) Interactions with combined chemical cues inform harvester ant foragers' decisions to leave the nest in search of food. PloS One, 8(1): e52219.doi: 10.1371/journal.pone.0052219

Hernandez Nopsa, J. F.; Daglish, G. J.; Hagstrum, D. W.; Leslie, J. F.; Phillips, T. W.; Scoglio, C.; Thomas-Sharma, S.; Walter, G. H.; Garrett, K. A. (2015) Ecological networks in stored grain: Key postharvest nodes for emerging pests, pathogens, and mycotoxins. BioScience, 65(10): 985-1002. doi: 10.1093/biosci/biv122

Huang, H.; Ren, L.; Li, H.; Schmidt, A.; Gershenzon, J.; Lu, Y.; Cheng, D. (2020) The nesting preference of an invasive ant is associated with the cues produced by actinobacteria in soil. PLoS Pathogens, 16(9): e1008800. doi: 10.1371/journal.ppat.1008800

Knoch, T. R.; Faeth, S. H.; Arnott, D. L. (1993) Endophytic fungi alter foraging and dispersal by desert seed-harvesting ants. Oecologia, 95(4): 470-473. doi: 10.1007/bf00317429

Kyle, K. E.; Puckett, S. P.; Caraballo-Rodríguez, A. M.; Rivera-Chávez, J.; Samples, R. M.; Earp, C. E.; Raja, H. A.; Pearce, C. J., Ernst, M.; van der Hooft, J. J. (2023) Trachymyrmex septentrionalis ants promote fungus garden hygiene using Trichoderma-derived metabolite cues. Proceedings of the National Academy of Sciences, 120(5): e2219373120. doi: 10.1073/pnas.2219373120

Lash, C. L.; Fordyce, J. A.; Kwit, C. (2020) Nest substrate, more than ant activity, drives fungal pathogen community dissimilarity in seed-dispersing ant nests. Oecologia, 194(4): 649-657. doi: 10.1007/s00442-020-04796-5

Lindström, S.; Timonen, S.; Sundström, L.; Johansson, H. (2019) Ants reign over a distinct microbiome in forest soil. Soil Biology and Biochemistry, 139: 107529. doi: 10.1016/j.soilbio.2019.107529

Liu, L.; Zhao, X.-Y.; Tang, Q.-B.; Lei, C.-L.; Huang, Q.-Y. (2019) The mechanisms of social immunity against fungal infections in eusocial insects. Toxins, 11(5): 244. doi: 10.3390/toxins11050244

MacMahon, J. A.; Mull, J. F.; Crist, T. O. (2000) Harvester ants (Pogonomyrmex spp.): their community and ecosystem influences. Annual Review of Ecology and Systematics, 31(1): 265-291. doi: 10.1146/annurev.ecolsys.31.1.265

Mannaa, M.; Kim, K. D. (2017) Influence of temperature and water activity on deleterious fungi and mycotoxin production during grain storage. Mycobiology, 45(4): 240-254. doi: 10.5941/myco.2017.45.4.240

Marsaro Junior, A. L.; Della Lucia, T.; Barbosa, L. C.; Maffia, L. A.; Morandi, M. A. (2001) Efeito de secreções da glândula mandibular de Atta sexdens rubropilosa Forel (Hymenoptera: Formicidae) sobre a germinação de conídios de Botrytis cinerea Pers. Fr. Neotropical Entomology, 30(3): 403-406. doi: 10.1590/S1519-566X2001000300010

McCook, H. C. (1880) The natural history of the agricultural ant of Texas: a monograph of the habits, architecture, and structure of Pogonomyrmex barbatus Lippincott. Nabu Press.

Meunier, J. (2015) Social immunity and the evolution of group living in insects. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1669): 20140102. doi: 10.1098/rstb.2014.0102

Mull, J. F. (2003) Dispersal of sagebrush-steppe seeds by the western harvester ant (Pogonomyrmex occidentalis). Western North American Naturalist, 63(3): 358-362.

Ohkawara, K.; Akino, T. (2005) Seed cleaning behavior by tropical ants and its anti-fungal effect. Journal of Ethology, 23(2): 93-98. doi: 10.1007/s10164-004-0132-4

Penn, H. J.; Crist, T. O. (2018) From dispersal to predation: A global synthesis of ant-seed interactions. Ecology and Evolution, 8(1): 9122-9138. doi: 10.1002/ece3.4377

Pereira, H.; Willeput, R.; Detrain, C. (2021) A fungus infected environment does not alter the behaviour of foraging ants. Scientific Reports, 11: 23573. doi: 10.1038/s41598-021-02817-8

R Core Team (2023) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org

Rocha, S. L.; Jorge, V. L.; Della Lucia, T. M.; Barreto, R. W.; Evans, H. C.; Elliot, S. L. (2014) Quality control by leaf-cutting ants: evidence from communities of endophytic fungi in foraged and rejected vegetation. Arthropod-Plant Interactions, 8: 485-493. doi: 10.1007/s11829-014-9329-9

Rodrigues, A.; Carletti, C. D.; Bueno, O. C.; Pagnocca, F. C. (2008) Leaf-cutting ant faecal fluid and mandibular gland secretion: effects on microfungi spore germination. Brazilian Journal of Microbiology, 39(1): 64-67. doi: 10.1590/S1517-83822008000100016

Therneau, T. M. (2024) A Package for Survival Analysis in R. R package version 3.7-0. doi: 10.32614/CRAN.package.survival

Uhey, D. A.; Hofstetter, R. W. (2022) From pests to keystone species: Ecosystem influences and human perceptions of harvester ants (Pogonomyrmex, Veromessor, and Messor spp.). Annals of the Entomological Society of America, 115(2): 127-140. doi: 10.1093/aesa/saab046

Whitford, W. G.; Ettershank, G. (1975) Factors affecting foraging activity in Chihuahuan desert harvester ants. Environmental Entomology, 4(5): 689-696. doi: 10.1093/ee/4.5.689

Downloads

Published

2024-11-22

How to Cite

Elliott-Vidaurri, L. V., Penn, H. J., & Choudhury, R. A. (2024). Red harvester ants Pogonomyrmex barbatus (Smith, 1858) (Hymenoptera: Formicidae) do not distinguish between sorghum head mold symptomatic and asymptomatic seeds. Entomological Communications, 6, ec06029. https://doi.org/10.37486/2675-1305.ec06029

Issue

Section

Scientific Note

Metrics