Effect of Methyl Jasmonate on the Performance of Tetranychus evansi Baker & Pritchard, 1960 (Acari: Tetranychidae) and Phytoseiulus longipes Evans, 1968 (Acari: Phytoseiidae) on Tomato Plants
DOI:
https://doi.org/10.37486/2675-1305.ec06009Keywords:
Acari, biological control, plant defense, population dynamics, methyl jasmonate (MeJA)Abstract
Inducible anti-herbivore defenses in plants are predominantly regulated by jasmonic acid (JA). The red spider mite Tetranychus evansi Baker & Pritchard, 1960 (Acari: Tetranychidae) is an invasive pest known for its detrimental impact on tomato plants and other Solanaceae crops. Here, we investigated the extent to which T. evansi and the predatory mite Phytoseiulus longipes Evans, 1968 (Acari: Phytoseiidae) are affected by induced JA-defenses. Initially, we artificially induced the JA-response in tomato plants using exogenous methyl jasmonate (MeJA) and subsequently assessed the effect of JA defenses on spider mite by evaluating mortality and oviposition rates. Our findings revealed a higher mortality and lower oviposition rates on plants treated with MeJA compared to non-treated control plants. Furthermore, we examined the predatory mite's predation rates on spider mite eggs produced on MeJA-treated and non-treated tomato plants. The results showed a reduced predation on T. evansi eggs derived from MeJA-treated plants, indicating a potential negative impact of JA-induced defenses on the predator's performance. Finally, we released five predatory females on T. evansi-infested tomato plants treated and non-treated with MeJA, monitoring the predator population density for three generations. Predator population was not affected, as the abundance of larvae and adults was not significantly different between treatments. These findings underscore the negative impact of JA defenses on herbivores and highlight the trade-off it may pose on natural enemies.
Downloads
References
Ament, K.; Kant, M. R.; Sabelis, M. W.; Haring, M. A.; Schuurink, R. C. (2004) Jasmonic acid is a key regulator of spider miteinduced volatile terpenoid and methyl salicylate emission in tomato. Plant Physiology, 135(4): 2025-2037. doi: 10.1104/pp.104.048694
Ament, K.; Van Schie, C. C.; Bouwmeester, H. J.; Haring, M. A.; Schuurink, R. C. (2006) Induction of a leaf specific geranylgeranyl pyrophosphate synthase and emission of (E,E)-4,8,12- trimethyltrideca-1,3,7,11-tetraene in tomato are dependent on both jasmonic acid and salicylic acid signaling pathways. Planta, 224: 1197-1208. doi: 10.1007/s00425-006-0301-5
Ataide, L. M.; Pappas, M. L.; Schimmel, B. C.; Lopez-Orenes, A.; Alba, J. M.; Duarte, M. V.; Pallini, A.; Schuurink, R. C.; Kant, M. R. (2016) Induced plant-defences suppress herbivore reproduction but also constrain predation of their offspring. Plant Science, 252: 300-310. doi: 10.1016/j.plantsci.2016.08.004
Baldwin, I. T. (1998) Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proceedings of the National Academy of Sciences, 95(14): 8113-8118. doi: 10.1073/pnas.95.14.8113
Bhavanam, S.; Stout, M. (2021) Seed Treatment With Jasmonic Acid and Methyl Jasmonate Induces Resistance to Insects but Reduces Plant Growth and Yield in Rice, Oryza sativa. Frontiers in Plant Science, 12: 691768. doi: 10.3389/fpls.2021.691768
Beran, F.; Petschenka, G. (2022) Sequestration of plant defense compounds by insects: from mechanisms to insect-plant coevolution. Annual Review of Entomology, 67: 163-180. doi: 10.1146/annurev-ento-062821-062319
Chiem, A.; Chaplin-Kramer, R.; Kliebenstein, D. J.; Chiem, A.; Morrill, E.; Mills, N. J.; Kremen, C. (2011) Chemically mediated tritrophic interactions: opposing effects of glucosinolates on a specialist herbivore and its predators. Journal of Applied Ecology, 48(4): 880-887. doi: 10.1111/j.1365-2664.2011.01990.x
Crawley, M. J. (2007) The R Book, John Wiley & Sons: West Sussex.
Kant, M. R.; Ament, K.; Sabelis, M. W.; Haring, M. A.; Schuurink, R. C. (2004) Differential timing of spider mite-induced direct and indirect defenses in tomato plants. Plant Physiology, 135(1): 483-495. doi: 10.1104/pp.103.038315
Kant, M. R.; Jonckheere, W.; Knegt, B.; Lemos, F.; Liu, J.; Schimmel, B. C. J.; Villarroel, C. A.; Ataide, L. M. S.; Dermauw, W.; Glas, J. J., et al. (2015) Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities. Annals of Botany, 115(7):1015-1051. doi: 10.1093/aob/mcv054
Kennedy, G. G. (2003) Tomato, pests, parasitoids, and predators: Tritrophic interactions involving the genus Lycopersicon. Annual Review of Entomology, 48: 51-72. doi: 10.1146/annurev.ento.48.091801.112733
Legarrea, S.; Janssen, A.; Dong, L.; Glas, J. J.; van Houten, Y. M.; Scala, A.; Kant, M. R. (2022) Enhanced top-down control of herbivore population growth on plants with impaired defences. Functional Ecology, 36(11): 2859-2872. doi: 10.1111/1365-2435.14175
Li, C.; Wang, P.; Menzies, N. W.; Lombi, E.; Kopittke, P. M. (2018) Effects of methyl jasmonate on plant growth and leaf properties. Journal of Plant Nutrition and Soil Science, 181(3): 409-418. doi: 10.1002/jpln.201700373
Navajas, M.; Moraes, G. J.; Auger, P.; Migeon, A. (2013) Review of the invasion of Tetranychus evansi: biology, colonization pathways, potential expansion and prospects for biological control. Experimental and Applied Acarology, 59(1–2): 43-65. doi: 10.1007/s10493-012-9590-5
Opitz, S. E.; Müller, C. (2009) Plant chemistry and insect sequestration. Chemoecology, 19(3): 117-154. doi: 10.1007/s00049-009-0018-6
Oriani, M. A.; Vendramim, J. D. (2010) Influence of trichomes on attractiveness and ovipositional preference of Bemisia tabaci (Genn.) B biotype (Hemiptera: Aleyrodidae) on tomato genotypes. Neotropical Entomology, 39 (6): 1002-1007. doi: 10.1590/s1519-566x2010000600024
R Development Core Team (2012) R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna Austria. http://www.R-project.org/
Sarmento, R. A.; Lemos, F.; Bleeker, P. M.; Schuurink, R. C.; Pallini, A.; Oliveira, M. G. A.; Lima, E. R.; Kant, M.; Sabelis, M. W.; Janssen, A. (2011) A herbivore that manipulates plant defence. Ecology Letters, 14(3): 229-236. doi: 10.1111/j.1461-0248.2010.01575.x
Savi, P. J.; Moraes, G. J.; Andrade, D. J. (2021) Effect of tomato genotypes with varying levels of susceptibility to Tetranychus evansi on performance and predation capacity of Phytoseiulus longipes. BioControl, 66(5): 687-700. doi: 10.1007/s10526-021-10096-5
Savi, P. J., Moraes, G. J., Carvalho, R. F.; Andrade, D. J. (2022) Bottom-up effects of breeding tomato genotypes on behavioral responses and performance of Tetranychus evansi population. Journal of Pest Science, 95(3): 1287-1301 doi: 10.1007/s10340-021-01437-5
Silva, F. R.; Moraes, G. J.; Gondim Jr., M. G. C.; Knapp, M.; Rouam, S. L.; Paes, J. L. A.; Oliveira, G. M. (2010) Efficiency of Phytoseiulus longipes Evans as a control agent of Tetranychus evansi Baker & Pritchard (Acari: Phytoseiidae: Tetranychidae) on screenhouse tomatoes. Neotropical Entomology, 39(6): 991-995. doi: 10.1590/S1519-566X2010000600022
Scott, J. G.; Wen, Z. (2001) Cytochromes P450 of insects: the tip of the iceberg. Pest Management Science, 57(10): 958-967. doi: 10.1002/ps.354
Tooker, J. F.; De Moraes, C. M. (2005) Jasmonate in lepidopteran eggs and neonates. Journal of Chemical Ecology, 31(11): 2753-2759. https://doi.org/10.1007/s10886-005-8553-2
Zhifeng, X.; Jinhui, C.; Tongyang, W.; Qianqian, H.; Peilin, L.; Mengyu, Z.; Ping, Z.; Lin, H. (2023) Novel Jasmonic Acid-Coumarin Pathway in the Eggplant that Inhibits Vitellogenin Gene Expression to Prevent Mite Reproduction. Journal of Agricultural and Food Chemistry, 71 (38), 13979-13987. doi: 10.1021/acs.jafc.3c04007
War, A. R.; Paulraj, M. G.; War, M. Y.; Ignacimuthu, S. (2011) Jasmonic acid mediated induced resistance in groundnut (Arachis hypogaea L.) against Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). Journal of Plant Growth Regulation, 30(4): 512-523. doi: 10.1007/s00344-011-9213-0
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Author(s)
This work is licensed under a Creative Commons Attribution 4.0 International License.
© The author(s) - Published by Sociedade Entomológica do Brasil