Companion plants for conservative management of Tupiocoris cucurbitaceus (Spinola 1852) (Heteroptera: Miridae: Dicyphini) on greenhouse tomato crops




Whitefly, Aphids, Mirids, Conservative biological control


In recent decades, greenhouse crops relevance increased due to the high demand for products outside their growing season, with tomato standing out as one of the most cultivated crops. In these production systems, insects and mites find optimal conditions for their development, achieving high populations that affect crops. Farmers usually control these populations using chemical insecticides, which affect the health of workers and consumers and have negative effects on the environment. Tomato crops suffer damage by lepidopterans and hemipterans, among which those known as whiteflies (Hemiptera: Aleyrodidae) perform regular attacks, causing yield and quality losses in the final product. Currently, the use of zoophytophagous predators of the Miridae family, Dicyphini tribe, as an alternative for their biological control, has intensified studies on Tupiocoris cucurbitaceus (Spinola, 1852), a predator of several species of aphids and whiteflies found in Uruguay. A strategy for the conservative management of those species was designed, using companion plants grown together with the crop. By the time the tomato plants were transplanted, Calendula officinalis, Smallanthus connatus, Tithonia rotundifolia, Nicotiana tabacum, Physalis peruviana and Petunia hybrida plants were established as companion species. These plants were monitored weekly together with the tomato plants, and a greater presence of T. cucurbitaceus in the crops with companion plants was found. The results suggest that the incorporated plants were useful for the preservation and retention of predaceous mirids in productive conditions.


Download data is not yet available.


Bado, S. G.; Cerri, A. M.; Vilella, F. (2005) Fauna insectil asociada a cultivos de dos especies de Physalis (Solanaceae) en Argentina. Boletín de Sanidad Vegetal, Plagas, 31(3): 321-333.

Basso, C.; Franco, J.; Grille, G.; Pascal, C. (2001) Distribución espacial de Trialeurodes vaporariorum (Homoptera: Aleyrodidae) en plantas de tomate. Boletín de Sanidad Vegetal, Plagas, 27(4): 475-487.

Brooks, M.; Bolker, B.; Kristensen, K.; Maechler, M; Magnusson, A.; McGillycuddy, M; Skaug, H.; Nielsen, A.; Berg, C.; van Bentham, K., et al. (2013) Generalized Linear Mixed Models using Template Model Builder Access on: iii.2022.

Castañé, C.; Alomar, O.; Goula, M.; Gabarra, R. (2004) Colonization of tomato greenhouses by the predatory mirid bugs Macrolophus caliginosus and Dicyphus tamaninii. Biological Control, 30(3): 591-597. doi: 10.1016/j.biocontrol.2004.02.012

Cheli, G.; Armendano, A.; González, A. (2006) Preferencia alimentaria de arañas Misumenops pallidus (Araneae: Thomisidae) sobre potenciales insectos presa de cultivos de alfalfa. Revista de Biología Tropical, 54(2): 505-513. doi: 10.15517/rbt.v54i2.13904

Desneux, N.; Wajnberg, E.; Wyckhuys, K. A. G.; Burgio, G.; Arpaia, S.; Narváez-Vasquez, C. A.; González-Cabrera, J.; Ruescas, D. C.; Tabone, E.; Frandon, J., et al. (2010) Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. Journal of Pest Science, 83(3): 197-215. doi: 10.1007/s10340-010-0321-6

Douma, J. C.; Weedon, J. T. (2019) Analysing continuous proportions in ecology and evolution: A practical introduction to beta and Dirichlet regression. Methods in Ecology and Evolution, 10: 1412-1430. doi: 10.1111/2041-210X.13234

Ferreira, P. S. F.; Silva, E. R.; Coelho, L. B. (2001) Miridae (Heteroptera) fitófagos e predadores de Minas Gerais, Brasil, com ênfase em espécies com potencial econômico. Iheringia, Série Zoológica, 91: 159-169. doi: 10.1590/s0073-47212001000200022

Ingegno, B. L.; Pansa M. G.; Tavella, L. (2009) Tomato colonization by predatory bugs (Heteroptera: Miridae) in agroecosystems of NW Italy. IOBC/WPRS Bull, 49: 287-291.

Logarzo, G. A.; Williams, L.; Carpintero, D. L. (2005) Plant bugs (Heteroptera: Miridae) associated with roadside habitats in Argentina and Paraguay: host plant, temporal, and geographic range effects. Annals of the Entomological Society of America, 98(5): 694-702. doi: 10.1603/0013-8746(2005)098[0694:pbhmaw];2

López, S. N.; Arce Rojas, F.; Villalba, V.; Cagnotti, C. (2012) Biology of Tupiocoris cucurbitaceus (Hemiptera: Miridae), a predator of the greenhouse whitefly Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) in tomato crops in Argentina. Biocontrol Science and Technology, 22(10): 1107-1117. doi: 10.1080/09583157.2012.705260

MGAP DIEA (Ministerio de Ganadería Agricultura y Pesca. Dirección de Estadísticas Agropecuarias) (2017) Encuestas Hortícolas 2015-2016 Zonas Sur y Litoral Norte. Montevideo. Access on: vi.2022

Mitidieri, M. S.; Polack L. A. (2012) Guía de monitoreo y reconocimiento de plagas, enfermedades y enemigos naturales de tomate y pimiento. INTA Buenos Aires. Access on: iv.2020.

Parolin, P.; Bresch, C.; Desneux, N.; Brun, R.; Bout, A.; Boll, R.; Poncet, C. (2012) Secondary plants used in biological control: A review. International Journal of Pest Management, 58(2): 91-100. doi: 10.1080/09670874.2012.659229

Perdikis, D.; Fantinou, A.; Lykouressis, D. (2011) Enhancing pest control in annual crops by conservation of predatory Heteroptera. Biological Control, 59(1): 13-21. doi: 10.1016/j.biocontrol.2011.03.014

Pérez-Hedo, M.; Alonso-Valiente, M.; Vacas, S.; Gallego, C.; Rambla, J.L.; Navarro-Llopis, V.; Granell, A.; Urbaneja, A. (2021) Eliciting tomato plant defenses by exposure to herbivore induced plant volatiles. Entomologia Generalis 41(3) doi: 10.1127/entomologia/2021/1196

Pérez-Hedo, M.; Bouagga, S.; Jaques, J.A.; Flors, V.; Urbaneja A. (2015) Tomato plant responses to feeding behavior of three zoophytophagous predators (Hemiptera: Miridae). Biological Control, 86: 46-51. doi: 10.1016/j.biocontrol.2015.04.006

Pérez-Hedo, M.; Urbaneja, A. (2016) The zoophytophagous predator Nesidiocoris tenuis: a successful but controversial biocontrol agent in tomato crops. In: Advances in Insect Control and Resistance Management, pp 121-138. Springer, Cham. doi: 10.1007/978-3-319-31800-4_7

Polack, L.; López, S. N.; Silvestre, C.; Viscarret, M.; Andorno, A.; Del Pino, M.; Peruzzi, G.; Gómez, J.; Iezzi, A. (2017) Control biológico en tomate con el mírido Tupiocoris cucurbitaceus. Access on: vi.2020.

R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Access on: vii.2021.

Rodríguez, I. V.; Cardona, C. (2001) Problemática de Trialeurodes vaporariorum y Bemisia tabaci (Homoptera: Aleyrodidae) como plagas de cultivos semestrales en el valle del Cauca. Revista Colombiana de Entomología, 27 (1-2): 21-26. doi: 10.25100/socolen.v27i1.9659

Silva, D.; Hanel, A.; Pereira F.; de Castro, M.; Simões Bento, J.M. (2022) Two in one: The neotropical mirid predator Macrolophus basicornis increases pest control by feeding on plants. Pest Management Science, 78(8): 3314-3323. doi: 10.1002/ps.6958

Smithson, M.; Verkuilen J. (2006) Supplemental Material for A Better Lemon Squeezer? Maximum-Likelihood Regression With Beta-Distributed Dependent Variables. Psychological Methods, 11(1): 54. doi: 10.1037/1082-989x.11.1.54.supp

Symondson, W. O. C.; Sunderland, K. D.; Greenstone, M. H. (2002) Can generalist predators be effective biocontrol agents? Annual Review of Entomology, 47(1): 561 94. doi: 10.1146/annurev.ento.47.091201.145240

Van Lenteren, J. C. (2012) The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. BioControl, 57(1): 1-20. doi: 10.1007/s10526-011-9395-1




How to Cite

Burla, J. P., Arbulo, N. ., Aldabe, J., Fagúndez, C., & Castiglioni, E. (2022). Companion plants for conservative management of Tupiocoris cucurbitaceus (Spinola 1852) (Heteroptera: Miridae: Dicyphini) on greenhouse tomato crops. Entomological Communications, 4, ec04028.