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Abstract. Feather mites are the most common ectosymbionts on birds. These obligatory symbionts are mainly transmitted during their host’s 
parental care, which creates high host specificity. Due to this intimate relationship, it is thought that their geographic distribution is restricted by 
their host distribution, or that a host species harbors the same mite composition across its whole range. However, our knowledge regarding the 
geographic distribution of feather mites remains scarce, with only a few studies indicating disconnections between mite and host distributions, 
especially in widespread hosts. Here, we investigate the feather mites distribution on four tanager species, three widespread – Thraupis sayaca 
(L.), T. palmarum (Wied), and Stilpnia cayana (L.) from Northern and Southern Brazil; and the Amazonian T. episcopus (L.). Feather mites were 
identified using the molecular barcode marker COX-1 using K2P genetic distances. We found a strong genetic structure between Northern and 
Southern populations of tanagers of more than 10%, even among conspecific hosts. Therefore, the mite distribution on Brazilian tanagers is 
predominantly shaped by geography rather than by host species. These features in turn reflect historical horizontal transmissions among the 
hosts, suggesting a high potential for frequent host switches in these symbionts.
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Analgoidean feather mites (Sarcoptiformes: Analgoidea) are the 
most abundant ectosymbionts associated with passerine birds (Aves: 
Passeriformes) (Gaud & Atyeo 1996). These mites have high levels of 
host specificity and most mite species are found on a single or closely 
related host species. In addition, different mites species can co-exist in 
different microhabitats of the same host individual (Dabert & Mironov 
1999). Despite being common and abundant avian ectosymbionts, 
many aspects of the feather mite ecology remain underexplored. One 
such aspect is their geographic distribution with respect to their host 
ranges. Does a feather mite distribution mirror that of its host? Does 
a host species have the same set of feather mites across its whole 
distribution? Only a few studies addressed those questions; in general 
they indicate that the feather mite assemblage on a bird species may 
be affected by climatic variables, such as humidity and temperature 
(Grossi & Proctor 2021; Meléndez et al. 2014); or reflect vicariance due 
to historical isolation of host populations (Dabert & Mironov 1999). 

In ubiquitous hosts spread by humans, such as rock pigeons, 
Columba livia Gmelin, 1789 and domestic chickens, Gallus gallus 
domesticus (L., 1758), mite assemblages apparently change in new 
localities, indicating that some mite species have been acquired in 
recent events of interaction with native and phylogenetically similar 
host species (Gaud 1992). As for feather mites on naturally widespread 
host species, i.e. generalist hosts with high adaptive plasticity, a 
molecular identification of mites is often required to investigate their 
patterns of distribution, either for a proper identification of different 
mite haplotypes across different localities, as for the identification of 
potential cryptic species (Doña et al. 2015). Notwithstanding, assessing 
the geographic distribution of symbionts is a background needed to 
measure their dispersal potential and their specificity level. Yet, 

almost no effort has been made to properly understand the patterns 
of distribution of these symbionts, especially in the Neotropics, 
where many feather mite species are yet to be named (Valim et al. 
2011; Pedroso & Hernandes 2016). Our knowledge is especially scarce 
for Brazil, a country with various landscapes and one of the richest 
bird faunas in the World (Pacheco et al. 2021). Therefore, here we 
investigate the preliminary distribution of feather mites on tanagers 
(Thraupidae Cabanis, 1847), comparing samples from Brazilian 
Northern and Southern territories. 

Feather mites were collected from four common and widespread 
tanager species: Thraupis sayaca (L., 1766), T. palmarum (Wied, 
1821), Stilpnia cayana (L., 1766) from both Northern and Southern 
territories of Brazil, and the Amazonian T. episcopus (L., 1766). Birds 
were captured using mist nets in: Amazon Forest (AMF), Northeast 
Atlantic Forest (NAF), and Southeast Atlantic Forest (SAF) (Tab. 1). 
Feather mites were collected by plucking infested feathers (permit 
MMA/SISBIO 57944),  then their DNA was extracted and a barcode 
gene, the mitochondrial cytochrome oxidase subunit-1 (COX-1) was 
sequenced following the protocols, primers, and parameters described 
in Klimov & OConnor (2008). A Maximum Likelihood phylogenetic 
tree was inferred using RaxML, also using sequences from previous 
studies, including samples of mites on tanagers from Mexico (Klimov 
et al. 2017). Mite’s exoskeletons (vouchers) were slide-mounted for 
morphological identification using Hoyer’s Medium (Gaud & Atyeo 
1996). All specimens were deposited at the Department of Ecology and 
Zoology of the Universidade Federal de Santa Catarina (ECZ-UFSC). 

Two species delimitation criteria based on the COX-1 were also 
performed – (i) a distance based delimitation using the Kimura-two-
parameter (K2P) distance calculated in the R package ‘ape’ 5.3 (Paradis 
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& Schliep 2019), and (ii) a barcoding gap analysis, using the Automatic 
Barcode Gap Discovery (ABGD), which groups putative species based 
on the barcoding gap among samples (Puillandre et al. 2012). 

We recorded three feather mite lineages showing cases of 
geographic partitioning with large genetic distances on tanagers in 
Brazil, one representing the mite genus Trouessartia Canestrini, 1899, 
and two other lineages in the mite genus Proctophyllodes Robin, 1868 
(Fig. 1A, B, C). The mite lineages presented similar patterns of geographic 
distribution, defined by the separation of mite populations between 
birds from Northern and Southern territories in Brazil. Trouessartia 
species yielded a genetic distance higher than 12% between the NAF 
and AMF vs. SAF host populations (Fig. 1A; 2A). In Proctophyllodes, one 
lineage (Proctophyllodes thraupis Atyeo & Braasch, 1966, described 
from Thraupis abbas (Deppe, 1830)), had genetic distance above 10% 

between AMF vs. NAF and SAF (Fig. 1B; 2B); while the other lineage, 
which included solely mites from Stilpnia cayana, had genetic distances 
above 12% between NAF vs. SAF populations (Fig. 1C; 2C).

Both species delimitation methods (ABGD and K2P) inferred to a 
split in the mite populations on tanagers in Brazil following a geographic 
pattern. The distribution pattern differed among the mite lineages, as 
both the Trouessartia and Proctophyllodes lineages from S. cayana 
presented a clear division between samples from Southern territories 
(SAF) from samples from Northern territories (NAF and AMF) (Fig. 1A, 
C; 2A, C). A different pattern of distribution was observed for the P. 
thraupis lineage, where the mite populations in the Atlantic Forest 
(SAF and NAF) presented connections between them, while the mite 
population from Amazon composed a separate group (Fig. 1B; 2B).

This pattern of distribution where the Northern Atlantic Forest is 

Figure 1. Genetic distance of three feather mite lineages – one Trouessartia (A) and two Proctopyllodes (B and C) on tanagers in Brazil. The relevant diverging nodes 
have their genetic distances in percentage highlighted. The relevant taxa were highlighted according to their sampling location: Northern and Southern territories. 

Table 1. Detailed information on each feather mite species, host species, collection codes, sampling sites, and GenBank accession numbers used in the present 
study.

Mite Haplotype Host Species Mite Code Host Code Location Coordinates GenBank Codes

Trouessartia sp. Thraupis sayaca LGAP77 SP53 Rio Claro, SP 22°23’46.4”S 47°32’50.1”W MW814607

Trouessartia sp. Thraupis sayaca LGAP78 PE07 Recife, PE 8°03’09.7”S 34°57’07.1”W MW814608

Trouessartia sp. Thraupis palmarum LGAP79 AC08 Rio Branco, AC 9°37’23.2”S 67°35’33.1”W MW814609

Trouessartia sp. Thraupis palmarum LGAP80 RN17 Natal, RN 5°50’33.5”S 35°12’05.6”W MW814610

Trouessartia sp. Thraupis episcopus LGAP81 PA06 Belem, PA 1°27’03.8”S 48°26’40.1”W MW814611

Proctophyllodes sp. Stilpnia cayana LGAP101 SP10 Rio Claro, SP 22°23’46.4”S 47°32’50.1”W MW814629

Proctophyllodes sp. Stilpnia cayana LGAP102 RN22 Natal, RN 5°50’33.5”S 35°12’05.6”W MW814630

Proctophyllodes sp. Stilpnia cayana LGAP103 PE03 Recife, PE 8°03’09.7”S 34°57’07.1”W MW814631

Proctophyllodes cf. thraupis Thraupis sayaca LGAP104 SP22 Rio Claro, SP 22°23’46.4”S 47°32’50.1”W MW814632

Proctophyllodes cf. thraupis Thraupis sayaca LGAP105 RN20 Natal, RN 5°50’33.5”S 35°12’05.6”W MW814633

Proctophyllodes cf. thraupis Thraupis palmarum LGAP107 AC07 Rio Branco, AC 9°57’00.0”S 67°44’00.0”W MW814636

Proctophyllodes cf. thraupis Thraupis palmarum LGAP108 RN17 Natal, RN 5°50’33.5”S 35°12’05.6”W MW814637
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more related to the Amazon Forest than with the Southern Atlantic 
Forest has been recorded in other taxa (Santos et al. 2007; Sobral-
Souza et al. 2015; Thomé et al. 2016; Ledo & Colli 2017) including 
birds (Batalha-Filho et al. 2013). Many studies suggest that the “dry 
diagonal” formed by the biomes Chaco, Cerrado, and Caatinga, is 
an important barrier preventing biotic exchange between the rain 
forests (Amazon and Atlantic Forest) (Werneck et al. 2011). Our 
data corroborate these biogeographic hypotheses and give valuable 
evidences for obligate symbionts in this regard. A similar allopatric 
pattern of feather mites were recorded in Europe, where different 
species of the mite genus Scutulanyssus Mironov, 1985 (Analgoidea: 
Pteronyssidae) were identified occurring on populations of the House 
Martin, Delichon urbicum (L., 1758), separated by the Ural Mountains 
(Dabert & Mironov 1999; Dabert 2004). In that study, however, the 
morphological differentiation of the mite species was evident, while in 
our study this pattern could be detected by using molecular data only.

The smallest genetic distance between samples from different 
territories was found in the P. thraupis clade, where mites from AMF 
differed in at least 10% with Atlantic Forest mites (SAF and NAF). This 
COX-1 genetic variation was expressively above the threshold of 3.4% 

found for species delimitation of feather mites in European passerines 
(Doña et al. 2015). Yet, in these European passerines, no genetic 
structure among mites collected from different geographic territories 
and different host species was found, and instead, putative cryptic 
species for feather mites on close related hosts were recognized (Doña 
et al. 2015). In North America, a minimum COX-1 distance of 6.6% 
among proctophyllodid species was identified on parulid warblers, 
with mites phylogenetically related according to their host’s nesting 
ecology (Matthews et al. 2018). In our study, the distribution of feather 
mites among tanagers were geographically shaped instead of following 
a host-specific pattern of distribution, i.e. close related mites were 
recorded on different host species instead among conspecific hosts, 
reflecting the relevance of horizontal pathways for their dispersion. 
Quantitative and thorough morphological analyses are needed to see 
if there are any morphological discontinuities in the cryptic species 
detected by molecular methods. Further studies, increasing the sample 
size and geographic coverage, are necessary to properly understand 
the pattern of genetic distribution of feather mites observed on 
Brazilian tanagers.

Figure 2. Schematic representation of geographic partition observed in different lineages of feather mites on tanagers in Brazil. A – Trouessartia on Thraupis, B – 
Proctophyllodes on Thraupis, and C – Proctophyllodes on Stilpinia. Phylogeographic clusters are represented. 
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